

Test des sorties du robot RAPE sur MPLABX

Dans ce cours nous présentons le programme test des sorties et proposons de faire le test afin de s'assurer du bon fonctionnement des sorties avant de mettre le programme d'aspiration en œuvre.

Table des matières

Te	est des sorties du robot RAPE sur MPLABX	1
	Transfert du fichier dans le pic	1
	Rappel rapide de la procédure de transfert dans le pic :	1
	choix du programme : 18f47k40 test Sorties.c.	1
	Connexion RS232 nour lire les informations venant du nic	 л
		۰ ۵
	Configuration et exploitation du pwm sur mplab	11

Présentation du programme

Transfert du fichier dans le pic

Rappel rapide de la procédure de transfert dans le pic :

choix du programme : 18f47k40_test_Sorties.c

Dans source Files, choisir le fichier « test_Sorties.c » en cliquant sur le bouton droit de la souris puis « include file... »

⊡… 🧱 18f	47k40_rap	e_multi_V1_01		Sour						
🖶 🛅 Header Files										
🖻 · 🕞	🗄 🦳 Important Files									
÷- 💼	Linker File	S		196						
÷- 👍	Source Fil	es		187						
	18f47	k40_test_12.c		188						
	18f47	k40_test_carre.c		189						
	図 18f47	k40_test_cycle_roue_avec_ralenti+retour_P6.c		190						
	맨 18f47	k40_test_cycle_roue_avec_ralentissement_P4.c		191						
I8t47k40_test_cycle_roue_p5.c										
	맨 18f47	k40_test_rotation.c		193						
MCC Generated Files										
	뗌 prog1	.c		196						
	뛥 prog_	escalier_V1.c		197						
	뛤 test_(cycle_aleatoire_P7.c		198						
	벨 test_(cycle_roue_continu_P3.c		199						
	뱀 test_(화	cycle_roue_continu_P4_arret obstacle.c		200						
	🚰 test_depla_virtuel.c									
	뱀 test_i	Entrees_base_P1.c		202						
	智 test_i	Entrees_P1_options.c		203						
	lest_	sorties P2.c		4						
	Libraries	Open		5						
(<u>+</u>) (<u>69</u> 7	Loadables	Cut	Ctrl+X	e						
k40 rape	multi \	Сору	Ctrl+C	7						
		Paste	Ctrl+V	c						
		Include file(s) in current configuration		0						
		Compile File		1						
		Complie rile		_ 2						
		Remove From Project		3						
Rename										
Save As Template										
History										
		Tools		>						
		Tools Properties		>						
		Tools Properties MISRA Check File		>						

Le fichier passe en gras.

3-1 Test des sorties du robot RAPE sur MPLABX

On clique deux fois dessus pour qu'il s'ouvre dans la fenêtre de droite.

Transfert dans le pic

Lancer le transfert à l'aide du pickit3 ou 4 puis cliquez sur la flèche verte

Si le transfert se passe bien vous devez voir la fenêtre suivante apparaître :

,) ×

Toujours vérifier que la led de cœur (verte) clignote suite à un transfert.

Connexion RS232 pour lire les informations venant du pic

On branche la liaison au pc (UART1) et boitier de conversion.

Boitier interface pour lire les printf envoyés par le pic sur un écran de pc

On lance TERATERM

○ TCP/IP	Hôte: Service	Myhost.exam Historique	ole.com TCP port#	: 22
	5311100	• SSH • Autre	SSH version: IP version:	SSH:
O Série	Port:	COM7: USB-S	ERIAL CH340 (C	OM7)

cliquez sur OK

Choix de

💆 COM6 - T	era Term VT					-	×
Fichier Editio	n Configuration	Contrôle	Fenêtre(\	V) Aide			
cmpt roue B cmpt roue G cmpt roue G cmpt roue G cmpt roue B cmpt roue B cmpt roue B	: 0 crpt roue : 0 crpt roue	DR: 0 DR: 0 DR: 0 DR: 0 DR: 0 DR: 0 DR: 0	PUH3/DR: 3 PUH3/DR: 3 PUH3/DR: 3 PUH3/DR: 3 PUH3/DR: 3 PUH3/DR: 3 PUH3/DR: 3	12 PUH4/08 2 PUH4/08 2 PUH4/08 2 PUH4/08 2 PUH4/08 12 PUH4/08 12 PUH4/08	312 312 312 312 312 312 312 312		

Donc nous avons :

Compteur roue gauche (capteur qui est sur la roue)

Compteur roue droite (même chose)

et les valeurs de PWM DRoit et GAuche (hacheur de 0 à 312).


```
11/2023
```

```
if (fm_bit_500ms)
{
    printf(" cmpt_roue_GA: %d ", cmpt_roue_GA);//
    printf(" cmpt_roue_DR: %d ", cmpt_roue_DR);
    printf(" écart roue : %d ", ecart_roue);
    printf(" PWM3/DR: %d ", duty_cycle_DR);//
    printf(" PWM4/GA: %d ", duty_cycle_GA);//
    printf("\r\n"); // pour revenir en début de ligne et descendre d'une ligne
```

}

Fonctionnement du Printf :

https://microchipdeveloper.com/tls2101:printf

%с	Single character
%s	String (all characters until '\0')
%d	Signed decimal integer
%0	Unsigned octal integer
%u	Unsigned decimal integer
%x	Unsigned hexadecimal integer with lower case digits (e.g. 1a5e)
%X	Same as %x but with upper case digits (e.g. 1A5E)
%f	Signed decimal value (floating point)
%e	Signed decimal value with exponent (e.g. 1.26e-5)
%E	Same as %e but uses upper case E for exponent (e.g. 1.26E-5)
%g	Same as %e or %f, depending on size and precision of value
%G	Same as %g but will use capital E for exponent

La variable cmpt_roue_GA (et droite) sont traitées en tache interruption et c'est là qu'elles sont « sommées »

Lors de la création du projet on se fait aider par MCC qui va créer toute la structure en fonction de nos choix de fonctionnement (timer, eusart, analogique, spi, i2c....) dans les fichiers qui sont créer nous pouvons ajouter du code mais lorsqu'on utilise des variables il faut qu'elles soient déclarées dans le répertoire « Header Files/MCC Generated Files/ ext_int.h»

3	oid mc	ot_ga	uche_manu(void)//	
			<pre>cde_sortie_mot_IN3_recul_GA=1;//à l pour freiner le moteur en fin de cde_sortie_mot_IN4_avance_GA =1; //à l pour freiner le moteur en fin duty_cycle_GA = 254;// à 254 pour freiner le moteur en fin de mouvem</pre>	mouvement de mouvement ent
		if	<pre>(cde_rot_mot_GA) {cde_sortie_mot_IN3_recul_GA=0 ;cde_sortie_mot_IN</pre>	<pre>4_avance_GA =1 ;duty_cycle_GA = 254 ;} // neur_mot_gau=0,</pre>
		if	<pre>(cde_rot_mot_inv_GA) {cde_sortie_mot_IN3_recul_GA=1 ;cde_sorti</pre>	<pre>_mot_IN4_avance_GA =2 ;duty_cycle_GA = 254 ;} // hacheur_mot_gau =1, heur_mot_gau=0,</pre>
-			}	

Traduction des mnémoniques :

cde_rot_mot_GA : commande de la rotation du moteur gauche (avance)

cde_rot_mot_inv_GA : commande de la rotation du moteur inverse gauche (recul)

Explications de la fonction :

Nous mettons toutes les entrées à 1 mais immédiatement après on active les sorties à 0 ou 1, sachant que nous passons par des bits internes sans agir directement sur la sortie donc il ne se passe rien sur la sortie directement.

If (cde_rot_mot_GA) {cde_sortie_mot_IN3_recul_GA=0 ;cde_sortie_mot_IN4_avance_GA =1 ;duty_cycle_GA = 254 ;}//

Lors de la commande « *cde_rot_mot_GA* » on active le bit de sortie « *cde_sortie_mot_IN4_avance_GA* » et on désactive le « *bit de sortie cde_sortie_mot_IN4_avance_GA* »

Ensuite pour que la sortie soit activée :

Exemple suivi de la précédente commande :

« sortie_mot_IN1_recul_DR =cde_sortie_mot_IN1_recul_DR; »

le bit de sortie commandé dans les lignes précédentes s'écrit dans la sortie.

<u>Rappel</u>: pour éviter des dysfonctionnements, il est impératif de mettre une seule commande de sortie, ce qui n'empêche pas de faire plusieurs commandes.

PWM

Schéma :

LM298N

Les sorties du pic attaque directement l'entrée du L298N

Nous avons deux ponts : à gauche commande du moteur de droite et le pont de droite moteur gauche.

Les pattes sur le PIC

- IN1 est liée à RD1 la patte 20 commande du moteur droit
- IN2 RD2 patte 21 commande moteur droit
- IN3 RC1 patte 16 commande moteur gauche
- IN4 RC2 patte 17 commande moteur gauche
- INA RD0 patte 19 PWM du moteur droit
- INB RC0 patte 15 PWM du moteur gauche

on commande le moteur suivant le principe qui suit

Freinage

Pour freiner le moteur on met le PWM au maxi et les deux to du haut ou du bas.

10

Les entrées INA et INB nous permettent de faire varier le rapport cyclique comme suit :

Configuration et exploitation du pwm sur mplab

Pour info comment transformer une PWM en sortie ana....

https://ww1.microchip.com/downloads/en/Appnotes/90003250A.pdf

Nous avons sur les moteurs encore une petite chose le PWM. Nous envoyons des impulsions qui finissent par donner une tension moyenne voici les signaux envoyés :

Le PWM est configuré sur 10bits.

Voici les valeurs issues de mesures :

100 %	312
96 %	300
93 %	290
89 %	280
83 %	260
80 %	250
76 %	240
70 %	220
64 %	200
57 %	180
50 %	156

La valeur du PWM fixé par deux registres utilisé par le pic (voir datasheet).

PWM3DCH = (dutyValue & 0x03FC)>>2;	// 8 MSBs of PWM duty cycle				
PWM3DCL = (dutyValue & 0x0003)<<6;	// 2 LSBs of PWM duty cycle				
PWM3DCH = 0x27;	// DC = 50%				
PWM3DCL = 0xC0;					

Nous avons dans ce cas une fréquence qui ne change pas, de 4khz réglé par le timer 2 et un duty cycle (rapport cyclique) est de 50% avec les valeurs ci-dessus mais dans le programme nous le ferons changer selon nos besoins.

<u>Attention</u> les valeurs affichées sont prises sur la patte du pic donc on sera en 0 à 5v, il faut penser que le signal est amplifié jusqu'à 12v dans le lm.

A 156 duty_cycle 50% (la fréquence reste inchangée de 4khz

Enfin à 312 on a 100%

No Ose	cilloscop	e PCSU	1000									-		×
File E	Edit Op	otions	View Math	Help										
0:	scilloscop	e	Spectrum A	nalyzer	Transient	Recorder	Function (Generator	Circuit An	alyzer	🔲 Logic Analyzer	Time/D	iv. 200ma	
												100ms	50ms	
	2	2V									0.1ms	20ms	10ms	
												5ms	2ms	
												1ms	0.5ms	
												0.2ms	0.1ms	
												50us	20us	
												10us	5us	
12		<u>سار او او او</u>										2us	1us	
												0.505	0.2us	
												1GS	/s	
												0.2us	0.1us	
												0.05us	0.02us	
												B	m	
													<u> </u>	
1											- History	Sin	gle	
	/Div	Ch	1				Ch2		_)	
-	0	n	Autoset	Pe	rsist	On	Auto	oset -		rigger Del	ау		- 1	
	21		/ 0.5/			2	1	0.5V	-	0n/0ff	On Off	→ ←		
	0.21		V 50mV		creen	0.21	0.11/	50m) (日 控	Source		Fot		
	0.27			5		0.27	10.17		FI E	Jource		C.W.		
:	20mV		nv 5mV	J Pr	obe	20mV	TUMV	- vmc	-	Edge				

Sachant qu'en dessous de 180 la tension n'est plus suffisante pour entrainer le robot.

Revenons au programme :

Les valeurs sont écrites au moment ou l'on en a besoin elle écrase la valeur du dessus, elle n'aura d'effet que lorsqu'elle sera envoyée dans le PWM sur la fonction de sortie (void).

Exemple quand on a aucune sortie activée on envoi 312 donc 12v sur le moteur alors qu'un mouvement écrase cette valeur et place 260 83% donc une tension moyenne de 10V.

Commande d'un moteur :

Dans le programme principal nous utiliserons toujours la commande « cde_rot_mot_GA » dans les commandes supérieures.

Valeur moyenne choisie pour nos essais

Après quelques tests, **260** en décimal est la valeur qui est suffisante pour analyser les mouvements et avoir un couple suffisant pour que le robot se déplace sans blocage. (par exemple il peut monter sur un tapis).

Les signaux sur le moteur (rouge) et en sortie de Pic(bleu).

On peut voir les bobines se charger puis se décharger.

11/2023

Oscilloscope PCSU1000		Waveform Parameters		- 🗆 X
File Edit Options View Math Help		Amplitude:	CH1	CH2
Discilloscope Spectrum Analyzer Transient Recorder Franction Generator Gircuit Analyzer Logic Analyzer	e/Div.	✓ DC Mean	3.88 V	0.88 V
очение спресния науче на науче полности спресно спресн	ms 200ms	🗆 Max		
T00r	ms 50ms	🗌 Min		
	ns 10ms	Peak-to-Peak		
5	is 2ms	🗌 High		
	0.5mg	Low		
	0.000	Amplitude		
	115 U. 1115	AC RMS		
	us Zuus	C dBV		
	us bus	🗌 AC dBm		
	is 1us	AC+DC RMS		
	us 0.2us	AC+DC dBV		
	us S/L	🗌 AC+DC dBm		
	1GS/s	Timing:		
	us 0.1us	Duty Cycle	83.4 %	???
	ius 0.02us	Positive Width		
		Negative Width		
	Run	🗖 Rise Time		
		🔲 Fall Time		
History	Single	Period		
Volte/Div Ch1 Ch2		Freguency		
- C Dn Autoset Persist Dn Autoset - C - Trigger Delay		🗌 Phase		
	1	Select All Unselect All	Options	Close Help
2 2 1V 0.5V Big Screen 2V 1V 0.5V : : : 00/011 00 00			opuoris	Close Thep
0.2V 0.1V 50mV 0.2V 0.1V 50mV Source Ch1 Ch2 Ext				
Probe Probe Edge Z				
Louping X1 Louping 1 1 1 -				